Search results for " cell cycle."

showing 10 items of 91 documents

Retinoic Acid affects Lung Adenocarcinoma growth by inducing differentiation via GATA6 activation and EGFR and Wnt inhibition

2016

AbstractA fundamental task in cancer research aims at the identification of new pharmacological therapies that can affect tumor growth. Differentiation therapy might exploit this function not only for hematological diseases, such as acute promyelocytic leukemia (APML) but also for epithelial tumors, including lung cancer. Here we show that Retinoic Acid (RA) arrests in vitro and in vivo the growth of Tyrosine Kinase Inhibitors (TKI) resistant Non Small Cell Lung Cancer (NSCLC). In particular, we found that RA induces G0/G1 cell cycle arrest in TKI resistant NSCLC cells and activates terminal differentiation programs by modulating the expression of GATA6, a key transcription factor involved …

0301 basic medicineAcute promyelocytic leukemiaScienceEGFRRetinoic acidMice NudeTretinoinBiologyArticle03 medical and health scienceschemistry.chemical_compoundDifferentiation therapySettore BIO/13 - Biologia ApplicataCarcinoma Non-Small-Cell LungCell Line TumorGATA6 Transcription FactormedicineRetinoic acidAnimalsHumansLung cancerProtein Kinase InhibitorsWnt Signaling PathwayTranscription factorCell ProliferationMultidisciplinaryQRWnt signaling pathwayCell Differentiationmedicine.diseaseG1 Phase Cell Cycle CheckpointsXenograft Model Antitumor Assaysrespiratory tract diseasesErbB Receptorslung cancerAnimals; Carcinoma Non-Small-Cell Lung; Cell Differentiation; Cell Line Tumor; Cell Proliferation; Drug Resistance Neoplasm; ErbB Receptors; G1 Phase Cell Cycle Checkpoints; GATA6 Transcription Factor; Humans; Mice Nude; Protein Kinase Inhibitors; Signal Transduction; Tretinoin; Wnt Signaling Pathway; Xenograft Model Antitumor Assays030104 developmental biologychemistryDrug Resistance NeoplasmImmunologyCancer researchMedicineAdenocarcinomaEngineering sciences. TechnologyTyrosine kinaseSignal Transduction
researchProduct

Cytoprotective and antioxidant properties of organic selenides for the myelin-forming cells, oligodendrocytes.

2018

Abstract Here a new series of twenty-one organoselenides, of potential protective activity, were synthesized and tested for their intrinsic cytotoxicity, anti-apoptotic and antioxidant capacities in oligodendrocytes. Most of the organoselenides were able to decrease the ROS levels, revealing antioxidant properties. Compounds 5b and 7b showed a high glutathione peroxidase (GPx)-like activities, which were 1.5 folds more active than ebselen. Remarkably, compound 5a diminished the formation of the oligodendrocytes SubG1 peak in a concentration-dependent manner, indicating its anti-apoptotic properties. Furthermore, based on the SwissADME web interface, we performed an in-silico structure-activ…

0301 basic medicineAntioxidantCell Survivalmedicine.medical_treatmentMolecular ConformationApoptosisCrystallography X-RayProtective Agents01 natural sciencesBiochemistryAntioxidantsCell Line03 medical and health scienceschemistry.chemical_compoundMyelinMiceStructure-Activity RelationshipOrganoselenium CompoundsDrug DiscoverymedicineAnimalsCytotoxicityMolecular Biologychemistry.chemical_classification010405 organic chemistryEbselenGlutathione peroxidaseOrganic ChemistryNeurodegenerationCells oligodendrocytesmedicine.diseaseG1 Phase Cell Cycle Checkpoints0104 chemical sciencesOligodendroglia030104 developmental biologymedicine.anatomical_structurechemistryBiochemistryApoptosisDrug DesignReactive Oxygen SpeciesBioorganic chemistry
researchProduct

AMG900 as novel inhibitor of the translationally controlled tumor protein

2020

Abstract Introduction Cancer is one of the leading causes of death worldwide. Classical cytotoxic chemotherapy exerts high side effects and low tumor selectivity. Translationally controlled tumor protein (TCTP) is a target for differentiation therapy, a promising, new therapeutic approach, which is expected to be more selective and less toxic than cytotoxic chemotherapy. The aim of the present investigation was to identify novel TCTP inhibitors. Methods We performed in silico screening and molecular docking using a chemical library of more than 31,000 compounds to identify a novel inhibitor of TCTP. We tested AMG900 in vitro for binding to TCTP by microscale thermophoresis and co-immunoprec…

0301 basic medicineApoptosisCell Cycle ProteinsToxicologyResting Phase Cell CycleFlow cytometry03 medical and health sciences0302 clinical medicineCyclin D1Differentiation therapyCell Line TumorNeoplasmsTranslationally-controlled tumor proteinBiomarkers TumormedicineHumansCyclin D3medicine.diagnostic_testbiologyChemistryG1 PhaseTumor Protein Translationally-Controlled 1General MedicineMolecular Docking SimulationBlot030104 developmental biologyProtein Biosynthesis030220 oncology & carcinogenesisCancer cellMCF-7 CellsCancer researchbiology.proteinPhthalazinesCyclin-dependent kinase 6Chemico-Biological Interactions
researchProduct

Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vi…

2018

AbstractCell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in …

0301 basic medicineCancer ResearchCellular differentiationCellstem cells; oxidative stress; clone isolation/dk/atira/pure/subjectarea/asjc/2800/2804Mice SCIDp38 Mitogen-Activated Protein KinasesMiceCell MovementProtein IsoformsMuscular Dystrophy/dk/atira/pure/subjectarea/asjc/2400/2403Settore BIO/06 - Anatomia Comparata E Citologiaeducation.field_of_studylcsh:CytologyStem CellsSettore BIO/13Cell DifferentiationSkeletalCell biologymedicine.anatomical_structureMuscleMatrix Metalloproteinase 2Animals; Cell Cycle Checkpoints; Cell Differentiation; Cell Line; Cell Movement; Cell Survival; Hydrogen Peroxide; Matrix Metalloproteinase 2; Mice; Mice SCID; Muscle Skeletal; Muscular Dystrophy Animal; Oxidative Stress; Protein Isoforms; Reactive Oxygen Species; Sarcoglycans; Stem Cell Transplantation; Stem Cells; p38 Mitogen-Activated Protein Kinases/dk/atira/pure/subjectarea/asjc/1300/1306/dk/atira/pure/subjectarea/asjc/1300/1307Cell SurvivalPopulationImmunologyBiologySCIDArticleCell Line03 medical and health sciencesCellular and Molecular NeuroscienceIn vivoSarcoglycansmedicineAnimalsProgenitor celllcsh:QH573-671educationMuscle Skeletaloxidative streMesoangioblastAnimalCell BiologyCell Cycle CheckpointsHydrogen PeroxideMuscular Dystrophy Animalclone isolationTransplantationstem cellOxidative Stress030104 developmental biologyCell cultureReactive Oxygen SpeciesStem Cell TransplantationCell Death & Disease
researchProduct

Doxorubicin anti-tumor mechanisms include Hsp60 post-translational modifications leading to the Hsp60/p53 complex dissociation and instauration of re…

2017

Hsp60 is a pro-carcinogenic chaperonin in certain tumor types by interfering with apoptosis and with tumor cell death. In these tumors, it is not known whether or not doxorubicin anti-tumor effects include a blockage of the pro-carcinogenic action of this protein. We used the human lung mucoepidermoid cell line NCI-H292 and different doses of doxorubicin to measure cell viability, cell cycle progression, cell senescence indicators, Hsp60 levels and its post-translational modifications as well as the release of the chaperonin into the extracellular environment. Cell viability was reduced in relation to doxorubicin dose and this was paralleled by the appearance of cell senescence markers. Con…

0301 basic medicineCancer ResearchLung NeoplasmsChaperoninsCellApoptosismedicine.disease_causeHistones0302 clinical medicineCellular SenescenceAntibiotics AntineoplasticAcetylationG2 Phase Cell Cycle Checkpointsmedicine.anatomical_structureOncology030220 oncology & carcinogenesisCell agingIntracellularProtein BindingSignal TransductionSenescenceCyclin-Dependent Kinase Inhibitor p21animal structuresCell Survivalchemical and pharmacologic phenomenaBiologycomplex mixturesMitochondrial ProteinsDoxorubicin Hsp60 Acetylation Ubiquitination p53 Replicative senescence03 medical and health sciencesDoxorubicin; Hsp60; p53; replicative senescence; post-translational modificationsCell Line TumormedicineHumansCell Proliferationdoxorubicin p53 Hsp60Dose-Response Relationship DrugCell growthfungiUbiquitinationChaperonin 60Molecular biology030104 developmental biologyAcetylationApoptosisDoxorubicinProteolysisCancer researchCarcinoma MucoepidermoidTumor Suppressor Protein p53CarcinogenesisProtein Processing Post-Translational
researchProduct

Synthesis and antiproliferative activity of a natural like glycoconjugate polycyclic compound

2016

Abstract A natural like O -glycoconjugate polycyclic compound 4 was obtained by a multistep procedure starting from N -(3-methyl-1-(4-nitrophenyl)-1 H -pyrazol-5-yl)acetamide. The glycosyl derivative 4 showed antiproliferative activity against all the tumoral cell lines of the NCI panel in the range 0.47–5.43  μ M. Cytofluorimetric analysis performed on MDA-MB231, a very aggressive breast cancer cell line, which does not express estrogen, progesterone and HER-2/neu receptors, showed that 4 is able to induce prolonged cell cycle arrest at G2/M phase and morphological signs of differentiation. These events are correlated with down-regulation of both cyclin B1 and cdc2, the cyclins involved in…

0301 basic medicineCell cycle checkpointCell SurvivalReceptor ErbB-2StereochemistryGlycoconjugateAntineoplastic AgentsAntiproliferative activityChemistry Techniques Synthetic03 medical and health sciences0302 clinical medicineCyclin-dependent kinaseCell Line TumorDrug DiscoveryHumansPolycyclic CompoundsMDA-MB231Cyclin B1Cell ProliferationCyclinPharmacologychemistry.chemical_classificationBiological ProductsCyclin-dependent kinase 1G2/M phase arrestp21WAF1 inhibitorbiologyChemistryKinaseDrug Discovery3003 Pharmaceutical ScienceO-glycoconjugate polycyclic compoundOrganic ChemistryGeneral MedicineMolecular biologyG2 Phase Cell Cycle CheckpointsGene Expression Regulation Neoplastic030104 developmental biologyCell culturePyrazolo[34-b]pyrazolo[3′4′:23]azepino[45-f]azocineDrug Design030220 oncology & carcinogenesisbiology.proteinM Phase Cell Cycle CheckpointsReceptors ProgesteroneGlycoconjugatesEuropean Journal of Medicinal Chemistry
researchProduct

[1,2]Oxazolo[5,4-e]isoindoles as promising tubulin polymerization inhibitors

2016

Abstract A series of [1,2]Oxazolo [5,4- e ]isoindoles has been synthesized through a versatile and high yielding sequence. All the new structures showed in the 1 HNMR spectra, the typical signal in the 8.34–8.47 ppm attributable to the H-3 of the [1,2]oxazole moiety. Among all derivatives, methoxy benzyl substituents at positions 3 and 4 or/and 5 were very effective in reducing the growth of different tumor cell lines, including diffuse malignant peritoneal mesothelioma (DMPM), an uncommon and rapidly malignancy poorly responsive to available therapeutic options. The most active compound 6j was found to impair tubulin polymerization, cause cell cycle arrest at G2/M phase and induce apoptosi…

0301 basic medicineCell cycle checkpointIsoindoles2]Oxazolo[5StereochemistryDiffuse malignant peritoneal mesotheliomaα-hydroxyalkyl ketonesAntineoplastic AgentsApoptosisIsoindoles01 natural sciencesTubulin Polymerization Inhibitors03 medical and health scienceschemistry.chemical_compoundIsomerismTubulinCell Line TumorDrug DiscoveryHumansMoietyProtein Structure QuaternaryOxazole[12]Oxazolo[54-e]isoindolePharmacology010405 organic chemistryChemistryAntitubulin agentsDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryGeneral MedicineSettore CHIM/08 - Chimica FarmaceuticaTubulin Modulators0104 chemical sciencesAntitubulin agentG2 Phase Cell Cycle Checkpointsα-hydroxyalkyl ketone030104 developmental biologyApoptosisActive compound4-e]isoindolesProton NMRM Phase Cell Cycle CheckpointsAntitubulin agents; Diffuse malignant peritoneal mesothelioma; [1; 2]Oxazolo[5; 4-e]isoindoles; α-hydroxyalkyl ketones; Pharmacology; Drug Discovery3003 Pharmaceutical Science; Organic Chemistry[1Drug Screening Assays AntitumorProtein Multimerization
researchProduct

In Vitro Study of the Cytotoxic, Cytostatic, and Antigenotoxic Profile of Hemidesmus indicus (L.) R.Br. (Apocynaceae) Crude Drug Extract on T Lymphob…

2018

In traditional Indian medicine, the crude drug Hemidesmus indicus root—commonly known as Indian sarsaparilla—is used alone or in poly-herbal preparations for the treatment of a wide range of diseases. The present study focuses on the cancer chemopreventive and therapeutic potential of H. indicus extracts on an acute lymphoblastic leukemia cell line (CCRF-CEM). With this aim in mind, we subjected H. indicus roots to two subsequent extractions (hydro-alcoholic extraction and soxhlet extraction). As DNA damage is an important prerequisite for the induction of mutations/cancer by genotoxic carcinogens, cancer chemoprevention may be achieved by preventing genotoxicity. Through an integrated …

0301 basic medicineDNA damageCell SurvivalHealth Toxicology and MutagenesisPhytochemicalsHemidesmus indicus; cancer cells; apoptosis; cell cycle; genotoxicity; antigenotoxicityantigenotoxicitylcsh:MedicineCancer cellCrude drugPharmacologymedicine.disease_causeToxicologyProtective AgentsPlant RootsArticleNOHemidesmus indicus03 medical and health sciences0302 clinical medicineCell Line TumormedicineHumansCarcinogenHemidesmus indicusHemidesmusbiologyChemistryPlant Extractslcsh:RgenotoxicityapoptosisApoptosiHemidesmus indicuCell cyclePrecursor Cell Lymphoblastic Leukemia-Lymphomabiology.organism_classificationAntineoplastic Agents Phytogenic030104 developmental biologyApoptosis030220 oncology & carcinogenesisCancer cellcancer cellscell cycleGenotoxicity<i>Hemidesmus indicus</i>; cancer cells; apoptosis; cell cycle; genotoxicity; antigenotoxicityDNA DamageToxins
researchProduct

DHA induces Jurkat T-cell arrest in G2/M phase of cell cycle and modulates the plasma membrane expression of TRPC3/6 channels.

2021

Abstract We investigated whether docosahexaenoic acid (DHA), a dietary n-3 fatty acid, modulates calcium (Ca2+) signaling and cell cycle progression in human Jurkat T-cells. Our study demonstrates that DHA inhibited Jurkat T-cell cycle progression by blocking their passage from S phase to G2/M phase. In addition, DHA decreased the plasma membrane expression of TRPC3 and TRPC6 calcium channels during T-cell proliferation. Interestingly, this fatty acid increased plasma membrane expression of TRPC6 after 24 h of mitogenic stimulation by phorbol-13-myristate-12-acetate (PMA) and ionomycin. These variations in the membrane expression of TRPC3 and TRPC6 channels were not directly correlated with…

0301 basic medicineDocosahexaenoic AcidsT-Lymphocyteschemistry.chemical_elementCalciumBiochemistryJurkat cellsCalcium in biology03 medical and health scienceschemistry.chemical_compoundJurkat CellsTRPC3TRPC6 Cation ChannelHumansTRPC Cation Channels030102 biochemistry & molecular biologyVoltage-dependent calcium channelIonomycinCell MembraneGeneral MedicineCell cycleCell biologyG2 Phase Cell Cycle Checkpoints030104 developmental biologychemistryGene Expression RegulationDocosahexaenoic acidIonomycinM Phase Cell Cycle CheckpointsTetradecanoylphorbol AcetateBiochimie
researchProduct

In silico identification of small molecules as new cdc25 inhibitors through the correlation between chemosensitivity and protein expression pattern

2021

The cell division cycle 25 (Cdc25) protein family plays a crucial role in controlling cell proliferation, making it an excellent target for cancer therapy. In this work, a set of small molecules were identified as Cdc25 modulators by applying a mixed ligand-structure-based approach and taking advantage of the correlation between the chemosensitivity of selected structures and the protein expression pattern of the proposed target. In the first step of the in silico protocol, a set of molecules acting as Cdc25 inhibitors were identified through a new ligand-based protocol and the evaluation of a large database of molecular structures. Subsequently, induced-fit docking (IFD) studies allowed us…

0301 basic medicineHepG2Protein familyCdc25In silicoAntiproliferative activityCell cycleLigandsCatalysisArticleInorganic Chemistrylcsh:Chemistry03 medical and health sciencesCdc250302 clinical medicineCDC2 Protein KinaseDrug DiscoveryHumanscdc25 PhosphatasesComputer SimulationMolecular Targeted TherapyPhysical and Theoretical ChemistryPhosphorylationMolecular Biologylcsh:QH301-705.5DRUDITSpectroscopyBinding SitesbiologyCell growthChemistryOrganic ChemistryGeneral MedicineHep G2 CellsCell cycleAntiproliferative activity; Cdc25; Cell cycle; DRUDIT; HepG2; Molecular dockingLigand (biochemistry)Small moleculeComputer Science Applications030104 developmental biologyBiochemistrylcsh:Biology (General)lcsh:QD1-999Docking (molecular)030220 oncology & carcinogenesisMolecular dockingbiology.proteinDrug Screening Assays Antitumor
researchProduct